Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
Biochem Biophys Rep ; 38: 101688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560051

RESUMO

Nalmefene, an antagonist of mu- and delta-opioid receptors and a partial agonist of kappa-opioid receptors, has shown promise in reducing alcohol consumption among patients with alcohol dependence. Opioid receptors play pivotal roles in various physiological processes, including those related to peripheral inflammatory diseases such as colitis and arthritis, as well as functions in the immune system and phagocytosis. Atherosclerosis, a chronic inflammatory disease, progresses through the phagocytosis and uptake of oxidized low-density lipoprotein (oxLDL) by macrophages in atherosclerotic plaques. Despite this knowledge, it remains unclear whether nalmefene influences the formation of atherosclerotic plaques and increases the risk of serious cardiovascular events. This study aims to elucidate the impact of nalmefene on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice and peritoneal macrophages in vitro. In this experiment, 8-week-old male ApoE KO mice were fed a high-fat diet intraperitoneally administered either vehicle (saline) or nalmefene (1 mg and 3 mg kg-1 day-1) for 21 days. Oil red O-staining and immunohistochemistry with an anti-MOMA2 (monocyte/macrophage) antibody showed that a dose-dependent increase in atherosclerotic plaque formation and augmentation of macrophage-rich plaque formation in ApoE-KO mice. Further investigations focused on the effects of nalmefene on the expression of scavenger receptor CD36 in RAW264.7 cells, conducted through western blotting analysis. Nalmefene demonstrated a significant increase in CD36 protein expression in RAW264.7 cells. To explore the impact on oxidized LDL uptake in peritoneal macrophages, cells were treated with nalmefene (300 µg/mL) for 24 h, followed by the addition of DiI-labeled oxLDL (DiI-oxLDL) for 4 h. Nalmefene significantly enhanced DiI-oxLDL uptake in macrophages. Additionally, treatment with nalmefene (300 µg/mL) for 24 h decreased the mRNA expression of mu-, delta-, and kappa-opioid receptors in RAW264.7 cells. In conclusion, nalmefene may augment oxLDL uptake by macrophages through increased CD36 expression and decreased opioid receptor, thereby contributing to atherosclerotic plaque formation and vulnerability. Consequently, the use of nalmefene may be associated with an elevated risk of cardiovascular events.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38570361

RESUMO

Over 50 million Americans endure chronic pain where many do not receive adequate treatment and self-medicate to manage their pain by taking substances like opioids and cannabis. Research has shown high comorbidity between chronic pain and substance use disorders (SUD) and these disorders share many common neurobiological underpinnings, including hypodopaminergic transmission. Drugs commonly used for self-medication such as opioids and cannabis relieve emotional, bothersome components of pain as well as negative emotional affect that perpetuates misuse and increases the risk of progressing towards drug abuse. However, the causal effect between chronic pain and the development of SUDs has not been clearly established. In this review, we discuss evidence that affirms the proposition that chronic pain is a risk factor for the development of opioid and cannabis use disorders by outlining the clinical evidence and detailing neurobiological mechanisms that link pain and drug misuse. Central to the link between chronic pain and opioid and cannabis misuse is hypodopaminergic transmission and the modulation of dopamine signaling in the mesolimbic pathway by opioids and cannabis. Moreover, we discuss the role of kappa opioid receptor activation and neuroinflammation in the context of dopamine transmission, their contribution to opioid and cannabis withdrawal, along with potential new treatments.

3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612817

RESUMO

Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.


Assuntos
Analgésicos Opioides , Oligopeptídeos , Ácido Pirrolidonocarboxílico/análogos & derivados , Receptores Opioides , Humanos , Ratos , Animais , Camundongos , Analgésicos Opioides/farmacologia , Ligantes , Morfina , Peptídeos Opioides/farmacologia , Dor/tratamento farmacológico
4.
Br J Pharmacol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636539

RESUMO

Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.

5.
J Pharmacol Exp Ther ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637015

RESUMO

Low efficacy mu opioid receptor (MOR) agonists may serve as novel candidate analgesics with improved safety relative to high-efficacy opioids. This study used a recently validated assay of pain-depressed behavior in mice to evaluate a novel series of MOR-selective C9-substituted phenylmorphan opioids with graded MOR efficacies. Intraperitoneal injection of dilute lactic acid (IP acid) served as a noxious stimulus to depress locomotor activity by mice in an activity chamber composed of two compartments connected by an obstructed door. Behavioral measures included (1) crosses between compartments (vertical activity over the obstruction) and (2) movement counts quantified as photobeam breaks summed across compartments (horizontal activity). Each drug was tested alone and as a pretreatment to IP acid. A charcoal-meal test and whole-body-plethysmography assessment of breathing in 5% CO2 were also used to assess gastrointestinal (GI) inhibition and respiratory depression, respectively. IP acid produced a concentration-dependent depression in crosses and movement that was optimally alleviated by intermediate- to low-efficacy phenylmorphans with sufficient efficacy to produce analgesia with minimal locomotor disruption. Follow-up studies with two low-efficacy phenylmorphans (JL-2-39 and DC-1-76.1) indicated that both drugs produced naltrexone-reversible antinociception with a rapid onset and a duration of ~1hr. Potency of both drugs increased when behavior was depressed by a lower IP-acid concentration, and neither drug alleviated behavioral depression by a non-pain stimulus (IP lithium chloride). Both drugs produced weaker GI inhibition and respiratory depression than fentanyl and attenuated fentanyl-induced GI inhibition and respiratory depression. Results support further consideration of selective, low-efficacy MOR agonists as candidate analgesics. Significance Statement This study used a novel set of mu opioid receptor (MOR)-selective opioids with graded MOR efficacies to examine the lower boundary of MOR efficacy sufficient to relieve pain-related behavioral depression in mice. Two novel low-efficacy opioids (JL-2-39, DC-1-76.1) produced effective antinociception with improved safety relative to higher- or lower-efficacy opioids, and results support further consideration of these and other low-efficacy opioids as candidate analgesics.

6.
J Pharmacol Exp Ther ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621994

RESUMO

Delta opioid receptors hold potential as a target for neurological and psychiatric disorders, yet no delta opioid receptor agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the delta opioid receptor is nuclear. However, it is known that certain delta opioid receptor agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the SNC80/BW373U86 chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel delta opioid receptor agonists. We used a beta-arrestin assay to screen a small GPCR-focused chemical library. We identified a novel chemotype of delta opioid receptor agonists, that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the delta opioid receptor over a panel of 167 other GPCRs, is slightly biased towards G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious beta-arrestin recruiters and may suggest this novel class of delta opioid receptor agonists could be expanded on to develop a clinical candidate drug. Significance Statement Delta opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high throughput screening assay, we identified a novel delta opioid receptor agonist chemotype, with anti-allodynic efficacy which may serve as alternative for the current clinical candidates.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38511209

RESUMO

When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in dorsal ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This finding prompted us to determine if endomorphin 2 and oxycodone, infused into the arterial supply of freely perfused muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction. The endomorphin 2-induced potentiation of the pressor responses to contraction were prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control, 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion, and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n=10). Infusion of endomorphin and naloxone did not potentiate the pressor responses in ASIC3 knockout rats (n=6). Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level. The peak pressor response averaged 23.1 ± 8.6 mmHg for control, 33.2 ± 11 mmHg after naloxone and oxycodone were infused, and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n=9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by endomorphin 2 potentiated the exercise pressor reflex.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38436758

RESUMO

Synthetic and semi-synthetic opioids are prescribed for the management of severe pain conditions, but their long-term use is often leading to physical dependence and addiction disorders. Understanding the complex neurobiology of the opioid system in preclinical models will be essential for the development of safe and efficacious analgesics. With rising numbers of synthetic opioid users and overdose cases, a better understanding of the neuroanatomical and cellular pathways associated with physical dependence and addiction is expected to guide treatment approaches for opioid use disorders. In this commentary, we highlight the importance of advanced genetic mouse models for studying the regional effects of opioid receptors, and we discuss the need of genetic mouse models for the investigation of the regional, circuit and cell compartment-specific role of intracellular mediators of opioid actions.

10.
Bull Exp Biol Med ; 176(4): 433-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38488963

RESUMO

Hypoxia (20 min) and reoxygenation (30 min) were simulated on isolated rat cardiomyocytes to evaluate the cytoprotective effect of selective δ2-opioid receptor agonist deltorphin II, opioid receptor antagonist naloxone methiodide, µ-opioid receptor antagonist CTAP, κ-opioid receptor antagonist nor-binaltorphimine, ε1-opioid receptor antagonist BNTX, and δ2-opioid receptors naltriben. Deltorphin II was administered 5 min before reoxygenation, antagonists were administered 10 min before reoxygenation. The cytoprotective effect of deltorphin II was assessed by the number of cardiomyocytes survived after hypoxia/reoxygenation, as well as by the lactate dehydrogenase content in the incubation medium. It has been established that the cytoprotective effect of deltorphin II occurs at a concentration of 64 nmol/liter and is associated with activation of δ2-opioid receptors.


Assuntos
Antagonistas de Entorpecentes , Receptores Opioides , Ratos , Animais , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta/genética , Miócitos Cardíacos , Receptores Opioides mu , Hipóxia
11.
J Pharmacol Sci ; 154(4): 264-273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485344

RESUMO

The monosynaptic connection from the lateral parabrachial nucleus (LPB) to the central amygdala (CeA) serves as a fundamental pathway for transmitting nociceptive signals to the brain. The LPB receives nociceptive information from the dorsal horn and spinal trigeminal nucleus and sends it to the "nociceptive" CeA, which modulates pain-associated emotions and nociceptive sensitivity. To elucidate the role of densely expressed mu-opioid receptors (MORs) within this pathway, we investigated the effects of exogenously applied opioids on LPB-CeA synaptic transmission, employing optogenetics in mice expressing channelrhodopsin-2 in LPB neurons with calcitonin gene-related peptide (CGRP). A MOR agonist ([D-Ala2,N-Me-Phe4,Glycinol5]-enkephalin, DAMGO) significantly reduced the amplitude of light-evoked excitatory postsynaptic currents (leEPSCs), in a manner negatively correlated with an increase in the paired-pulse ratio. An antagonist of MORs significantly attenuated these effects. Notably, this antagonist significantly increased leEPSC amplitude when applied alone, an effect further amplified in mice subjected to lipopolysaccharide injection 2 h before brain isolation, yet not observed at the 24-h mark. We conclude that opioids could shut off the ascending nociceptive signal at the LPB-CeA synapse through presynaptic mechanisms. Moreover, this gating process might be modulated by endogenous opioids, and the innate immune system influences this modulation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Núcleo Central da Amígdala , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Núcleo Central da Amígdala/metabolismo , Transmissão Sináptica , Neurônios , Sinapses/fisiologia , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia
12.
Kaohsiung J Med Sci ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446546

RESUMO

Transcutaneous electrical nerve stimulation (TENS) activates various pathways to induce antinociceptive effects, based on the frequencies used. This study evaluates the preemptive analgesic effects and their duration of low- (LT: 4 Hz) and high-frequency TENS (HT: 100 Hz) using a rat model of acute inflammatory pain. Acute inflammation was induced by injecting 1% formalin into the hind paws of rats. LT or HT was applied for 30 min before formalin injection. Pain-related behaviors, such as licking, flinching, and lifting, were recorded for 60 min postinjection. Immunohistochemistry was used to assess the number of phosphorylated extracellular signal-regulated kinase (pERK)- and c-fos-positive cells in the spinal cord. Naloxone, a µ-opioid receptors (MORs) antagonist, and naltrindole, a δ-opioid receptors (DORs) antagonist, were administered before TENS application. Pain behavior duration and pERK- and c-fos-positive cell expression were then measured. LT and HT pretreatment significantly reduced both pain behaviors and the number of pERK- and c-fos-positive cells postformalin injection. Naloxone and naltrindole partially reversed the effects of LT and HT, respectively. Notably, HT's analgesic effect lasted up to 120 min whereas that of LT persisted for 90 min. LT and HT effectively exerted their preemptive analgesic effects on acute inflammatory pain by inhibiting pERK and c-fos expression in the spinal cord. HT presented a longer-lasting effect compared to LT. MOR and DOR activation may contribute to LT and HT's analgesic mechanisms, respectively.

13.
J Pharmacol Exp Ther ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409113

RESUMO

While agonists of mu (MOR) and kappa (KOR) opioid receptors have analgesic effects, they produce euphoria and dysphoria, respectively. Other side effects include respiratory depression and addiction for MOR agonists and sedation for KOR agonists. We reported that 17-cyclopropylmethyl-3,14ß-dihydroxy-4,5α-epoxy-6ß-{[4'-(2'-cyanopyridyl)]carboxamido}cmorphinan (NCP) displayed potent KOR full agonist and MOR partial agonist activities (58%) with 6.5x KOR-over-MOR selectivity in vitro Herein, we characterized pharmacological effects of NCP in rodents. In mice, NCP exerted analgesic effects against inflammatory pain in both the formalin test and the acetic acid writhing test, with A50 values of 47.6 and 14.4 microg/kg (s.c.), respectively. The analgesic effects in the acetic acid writhing test were mediated by the KOR. NCP at doses much higher than those effective in reducing inflammatory pain did not produce antinociception in the hot plate and tail flick tests, inhibit compound 48/80-induced scratching, cause conditioned place aversion (CPA) or preference, impair rotarod performance, inhibit locomotor activity, cause respiratory depression, or precipitate morphine withdrawal. However, NCP (10~100 microg/kg) inhibited gastrointestinal transit with a maximum of ~40% inhibition. In MOR knockout mice, NCP caused CPA, demonstrating that its lack of CPA is due to combined actions on the MOR and KOR. Following s.c. injection, NCP penetrated into the mouse brain. In rats trained to self-administer heroin, NCP (1~320 microg/kg/infusion) did not function as a reinforcer. Thus, NCP produces potent analgesic effects via KOR without side effects except constipation. Therefore, dual full KOR/partial MOR agonists with moderate KOR-over-MOR selectivity may be promising as non-addictive analgesics for inflammatory pain. Significance Statement Developing non-addictive analgesics is crucial for reducing opioid overdose deaths, minimizing drug misuse, and promoting safer pain management practices. Herein, pharmacology of a potential non-addictive analgesic, NCP, is reported. NCP has full KOR agonist / partial MOR agonist activities with a 6.5 x selectivity for KOR over MOR. Unlike MOR agonists, analgesic doses of NCP do not lead to self-administration or respiratory depression. Furthermore, NCP does not produce aversion, hypolocomotion, or motor incoordination, side effects typically associated with KOR activation.

14.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396814

RESUMO

Methadone is an effective and long-lasting analgesic drug that is also used in medication-assisted treatment for people with opioid use disorders. Although there is evidence that methadone activates µ-opioid and Toll-like-4 receptors (TLR-4s), its effects on distinct immune cells, including mast cells (MCs), are not well characterized. MCs express µ-opioid and Toll-like receptors (TLRs) and constitute an important cell lineage involved in allergy and effective innate immunity responses. In the present study, murine bone-marrow-derived mast cells (BMMCs) were treated with methadone to evaluate cell viability by flow cytometry, cell morphology with immunofluorescence and scanning electron microscopy, reactive oxygen species (ROS) production, and intracellular calcium concentration ([Ca2+]i) increase. We found that exposure of BMMCs to 0.5 mM or 1 mM methadone rapidly induced cell death by forming extracellular DNA traps (ETosis). Methadone-induced cell death depended on ROS formation and [Ca2+]i. Using pharmacological approaches and TLR4-defective BMMC cultures, we found that µ-opioid receptors were necessary for both methadone-induced ROS production and intracellular calcium increase. Remarkably, TLR4 receptors were also involved in methadone-induced ROS production as it did not occur in BMMCs obtained from TLR4-deficient mice. Finally, confocal microscopy images showed a significant co-localization of µ-opioid and TLR4 receptors that increased after methadone treatment. Our results suggest that methadone produces MCETosis by a mechanism requiring a novel crosstalk pathway between µ-opioid and TLR4 receptors.


Assuntos
Analgésicos Opioides , Armadilhas Extracelulares , Humanos , Animais , Camundongos , Analgésicos Opioides/farmacologia , Receptor 4 Toll-Like/metabolismo , Metadona/farmacologia , Mastócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Óssea/metabolismo , Cálcio/metabolismo , Armadilhas Extracelulares/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
15.
Biomedicines ; 12(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38398023

RESUMO

The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers ß-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.

16.
BMC Anesthesiol ; 24(1): 77, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408913

RESUMO

BACKGROUND: Extensive metastatic and refractory cancer pain is common, and exhibits a dissatisfactory response to the conventional intrathecal infusion of opioid analgesics. CASE PRESENTATION: The present study reports a case of an extensive metastatic esophageal cancer patient with severe intractable pain, who underwent translumbar subarachnoid puncture with intrathecal catheterization to the prepontine cistern. After continuous infusion of low-dose morphine, the pain was well-controlled with a decrease in the numeric rating scale (NRS) of pain score from 9 to 0, and the few adverse reactions to the treatment disappeared at a low dose of morphine. CONCLUSIONS: The patient achieved a good quality of life during the one-month follow-up period.


Assuntos
Dor do Câncer , Neoplasias , Dor Intratável , Humanos , Morfina , Dor Intratável/etiologia , Dor Intratável/induzido quimicamente , Dor do Câncer/tratamento farmacológico , Qualidade de Vida , Analgésicos Opioides , Injeções Espinhais/efeitos adversos
17.
Expert Opin Investig Drugs ; 33(3): 219-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366822

RESUMO

INTRODUCTION: Irritable bowel syndrome (IBS) has a significant impact on society and quality of life. Current treatments are ineffective, and new investigational drugs are necessary. AREAS COVERED: Numerous potential therapies are developing, targeting different areas such as cannabinoid signaling, opioid receptors, tachykinin (NK2) receptors, ß3-adrenergic receptors, intestinal microbiota, inflammation, and 5HT receptors. Clinical trial evidence has shown that loperamide, eluxadoline, alosetron, ramosetron, bile acid sequestrants, and rifaximin can modulate GI alterations and benefit patients with IBS-D. Among the potential therapies, ibodutant, ibudilast, blautix, BOS-589, solabegron, vibegron, olorinab, ebastine, and ORP-101 have demonstrated possible effects but remain confirmed. EXPERT OPINION: Individuals with IBS-D require cost-effective treatment options that do not impede their productivity or that of their caregivers. This is necessary for consistent healthcare and improved quality of life. Therefore, we should focus on developing new, efficient, and affordable medications for IBS-D. The government, insurers, and society must recognize this need and collaborate to ensure its fulfillment.


Assuntos
Compostos Heterocíclicos com 2 Anéis , Síndrome do Intestino Irritável , Humanos , Diarreia/tratamento farmacológico , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Síndrome do Intestino Irritável/tratamento farmacológico , Qualidade de Vida , Ensaios Clínicos como Assunto
18.
J Biochem ; 175(4): 337-355, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38382631

RESUMO

Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.


Assuntos
Morfinanos , Morfinanos/química , Morfinanos/metabolismo , Morfinanos/farmacologia , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/química , Biologia Molecular
19.
Front Pharmacol ; 15: 1328128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414736

RESUMO

The strong ethnopharmacological utilization of Isodon rugosus Wall. Ex. Benth is evident in the treatment of several types of pain and inflammation, including toothache, earache, abdominal pain, gastric pain, and generalized body pain and inflammation. Based on this background, the antinociceptive effects of the crude extract, various fractions, and essential oil have been reported previously. In this research work, we isolate and characterize pure bioactive compounds from I. rugosus and evaluate possible mechanisms using various in vivo and in vitro models. The pure compounds were analyzed for analgesic and anti-inflammatory activities through various assays. The column chromatography of the chloroform fraction of I. rugosus led to the identification of two pure compounds, i.e., 1 and 2. Compound 1 demonstrated notable inhibition (62% writhing inhibition, 72.77% COX-2 inhibition, and 76.97% 5-LOX inhibition) and anti-inflammatory potential (>50% paw edema inhibition at various intervals). The possible mechanism involved in antinociception was considered primarily, a concept that has already been elucidated through the application of naloxone (an antagonist of opioid receptors). The involvement of adrenergic receptors was investigated using a hot plate model (an adrenergic receptor antagonist). The strong ethnomedicinal analgesic background of I. rugosus, supported by previous reports and current observations, leads to the conclusion that I. rugosus is a potential source of antinociceptive and anti-inflammatory bioactive compounds. It may be concluded from the results that the isolated analgesic compounds of I. rugosus may be a possible alternative remedy for pain and inflammation management with admirable efficacy and safety profiles.

20.
Cureus ; 16(1): e52755, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38389632

RESUMO

Nalbuphine, a semi-synthetic opioid, has gained attention for its analgesic properties, but its specific impact on hemodynamics in ear, nose, and throat (ENT) surgeries remains a subject of exploration. This comprehensive review aims to systematically analyze existing literature to understand the nuanced hemodynamic effects of nalbuphine during ENT procedures. Nalbuphine demonstrates promise as an analgesic agent in ENT surgeries with generally stable hemodynamic profiles. However, the variability in study designs and outcomes necessitates a cautious interpretation. The review underscores the need for standardized protocols and further research to elucidate patient-specific considerations, ensuring optimal utilization of nalbuphine in enhancing overall perioperative care for ENT patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...